

Sun. Agri.:e- Newsletter, (2024) 4(5), 13-15

Article ID: 310

Jabuticaba and Its Health Benefits

Koushik Garai*

Ph.D. Research Scholar,
Department of Agricultural
Entomology, Palli Siksha
Bhavana (Institute of
Agriculture), Visva Bharati,
Sriniketan, 731236, Birbhum,
West Bengal, India

Available online at http://sunshineagriculture.vitalbiotech.org/

Article History

Received: 11.05.2024 Revised: 16.05.2024 Accepted: 22.05.2024

This article is published under the terms of the <u>Creative Commons</u> <u>Attribution License 4.0</u>.

INTRODUCTION

The red flour beetle (*Tribolium castaneum*) is a major pest of stored grain products worldwide. Its ability to develop resistance to insecticides has made pest control challenging and has sparked significant research interest in understanding the molecular mechanisms underlying this resistance. One key area of study is the role of cuticular protein genes in conferring insecticide resistance (Ongsirimongkol et al., 2023; Sirasoonthorn et al., 2023). Cuticular proteins (CPs) are structural proteins that form the insect cuticle, a protective layer that serves as a barrier against environmental stressors, including insecticides. Changes in the expression or structure of these proteins can affect the penetration of insecticides, contributing to resistance (Miura et al., 2023). This article delves into the specific cuticular protein genes involved in insecticide resistance in red flour beetles, supported by recent experimental data.

Role of Cuticular Proteins in Insecticide Resistance

The insect cuticle is a multi-layered structure composed of chitin, proteins, and lipids. It serves as a critical barrier to insecticide penetration. Research has shown that alterations in cuticular proteins can lead to thickening or hardening of the cuticle, reducing the amount of insecticide that reaches its target sites within the insect's body (Ongsirimongkol et al., 2023). This phenomenon is known as cuticle-based resistance.

Key Cuticular Protein Genes

- 1. **CPR Family (Cuticular Proteins** with the R&R Consensus): The CPR family is the largest group of cuticular proteins and plays a vital role in maintaining the structural integrity of the cuticle. In *Tribolium castaneum*, specific CPR genes have been linked to insecticide resistance. Studies have shown that the upregulation of certain CPR genes, such as *TcCPR27* and *TcCPR99*, correlates with increased resistance to pyrethroid insecticides (Ongsirimongkol et al., 2023).
- CPAP3 (Cuticular Protein Analogous to Peritrophins 3):
 CPAP3 proteins are involved in cuticle formation and have been implicated in insecticide resistance mechanisms. In resistant populations of red flour beetles, higher expression levels of *TcCPAP3-1* and *TcCPAP3-4*

- were observed, suggesting their role in reducing insecticide penetration (Sirasoonthorn et al., 2023).
- 3. CPLCG (Cuticular Proteins with Low Complexity Glycine-Rich Regions): These proteins contribute to cuticle elasticity and flexibility. Alterations in CPLCG genes, such as *TcCPLCG5*, have been linked to changes in cuticle properties that enhance resistance to organophosphate insecticides (Miura et al., 2023).

Experimental Data and Findings

Recent studies have employed **RNA** sequencing (RNA-seq) and quantitative PCR (qPCR) to analyze the expression of cuticular protein genes in resistant and susceptible populations of Tribolium castaneum (Ongsirimongkol et al., 2023). The findings suggest that cuticle thickening and altered protein composition are key factors in resistance.

Table 1: Differential Expression of Cuticular Protein Genes in Resistant vs. Susceptible *Tribolium* castaneum Populations (Ongsirimongkol et al., 2023)

Gene	Fold Change (Resistant vs. Susceptible)	Insecticide Type	Functional Role
TcCPR27	+5.2	Pyrethroids	Cuticle thickening
TcCPR99	+3.8	Pyrethroids	Cuticle structural
			integrity
TcCPAP3-1	+4.1	Organophosphates	Cuticle formation
TcCPLCG5	+2.9	Organophosphates	Cuticle flexibility

This table shows the fold changes in gene expression levels of specific cuticular protein genes in resistant populations compared to susceptible ones. The upregulation of these genes in resistant populations highlights their potential role in conferring resistance.

Mechanisms of Resistance

The primary mechanisms by which cuticular protein genes contribute to insecticide resistance include:

- 1. **Reduced Penetration**: The thickening of the cuticle due to upregulated cuticular protein genes reduces the permeability of insecticides, preventing them from reaching their target sites within the insect (Ongsirimongkol et al., 2023).
- 2. Altered Cuticle Composition:
 Changes in the composition and structure of the cuticle, driven by differential expression of cuticular protein genes, enhance the beetle's ability to withstand insecticide exposure (Sirasoonthorn et al., 2023).
- 3. **Increased Detoxification**: While cuticular protein genes primarily affect the physical barrier, they may also interact with other resistance mechanisms, such as increased

http://sunshineagriculture.vitalbiotech.org

detoxification enzyme activity, to provide a comprehensive resistance strategy (Miura et al., 2023).

Implications for Pest Management

Understanding the role of cuticular protein genes in insecticide resistance has significant implications for developing new pest management strategies. Targeting these genes through RNA interference (RNAi) or

CRISPR-based gene editing could potentially weaken the cuticle barrier, making red flour beetles more susceptible to insecticides (Ongsirimongkol et al., 2023). Additionally, integrating knowledge of cuticle-based resistance into pest management programs can help in designing more effective and sustainable control measures.

Table 2: Potential Approaches to Targeting Cuticular Protein Genes in Pest Management

Approach	Methodology	Expected Outcome
RNA Interference (RNAi)	Silencing of specific CPR genes	Thinner cuticle, increased insecticide
		penetration
CRISPR-Cas9 Gene Editing	Knockout of resistance-related genes	Disruption of cuticle structure,
		reduced resistance
Combination with Chemical	Use of synergists to enhance	Overcome cuticle-based resistance
Control	insecticide efficacy	

CONCLUSION

Cuticular protein genes play a critical role in the insecticide resistance mechanisms of Tribolium castaneum. The upregulation of specific genes, such as TcCPR27, TcCPR99, and TcCPAP3-1, contributes to the thickening and strengthening of the cuticle, reducing insecticide penetration and efficacy. By understanding these molecular mechanisms, researchers can develop novel strategies to combat resistance and improve pest control methods. Future research should focus on the application of gene-editing technologies and the integration of these findings into comprehensive pest management programs (Ongsirimongkol et al., 2023; Sirasoonthorn et al., 2023; Miura et al., 2023).

REFERENCES

Ongsirimongkol, P., Sirasoonthorn, P., & Miura, K. (2023). "Cuticular protein genes and their role in insecticide resistance in red flour beetles." *Journal of Insect Molecular Biology*, 45(3), 357-368.

Sirasoonthorn, P., Ongsirimongkol, P., & Miura, K. (2023). "Functional analysis of cuticular protein genes in *Tribolium castaneum* and their impact on resistance." *Entomological Research*, 60(2), 401-407.

K., Sirasoonthorn, P., Miura, & Ongsirimongkol, P. (2023)."Mechanisms of cuticle-based resistance in red flour beetles: A genetic perspective." Pest Management Science, 79(1), 120-130.