

Sun. Agri.:e- Newsletter, (2025) 5(11), 14-17

Article ID: 465

Zero-Budget Natural Farming: A Sustainable Pathway toward Ecological and Economic Resilience

Rita Fredericks¹, Sweta Jha², Alina Mone³

 ¹CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)
²Precision Grow - Manager Research & Development
³Agri Analyst. Precision Grow

Corresponding Author Rita Fredericks

Available online at www.sunshineagriculture.vitalbiotech.org

Article History

Received: 3.11.2025 Revised: 7.11.2025 Accepted: 12.11.2025

This article is published under the terms of the <u>Creative Commons</u> <u>Attribution License 4.0</u>.

INTRODUCTION

ZBNF is a transformative, low-cost farming concept articulated by Padma Shri Subhash Palekar. It advocates a chemical-free farming regime that uses absolutely no purchased inputs other than those naturally and locally available. The term "zero-budget" represents a sense of the philosophy that farmers ought not to spend valuable money to buy fertilizers, pesticides, or any other external input in agriculture. They can raise crops with things available on the farm free of cost and thereby avoid the cost of production, hence reducing dependence on credit. ZBNF has obtained national and international acclaim due to its ability to rejuvenate soil health, increase crop productivity, and maintain ecological balance. In the post-green revolution period, when Indian farmers are increasingly facing problems relating to increasing input costs, deterioration of soil health, climate variability, and escalating debts, ZBNF offers a promising route toward sustainable and self-reliant agriculture.

Principles of ZBNF

ZBNF is based on four fundamental pillars that contribute to soil rejuvenation, improved crop health, and a decrease in dependency on external inputs.

1. Jivamrit

Jivamrit is a fermented microbial solution prepared using cow dung, cow urine, jaggery, pulse flour, and a small amount of soil from the field bund. This acts as a highly potent growth stimulant for the soil, increasing the population of beneficial microorganisms manyfold. These microbes enhance nutrient availability by breaking down organic matter and facilitating all the essential biochemical processes in the soil. Upon regular application, Jivamrit improves the structure, diversity, and health of the soil, thereby leading to healthier plant growth. Thus, crops grown using Jivamrit show better nutrient uptake, stronger immunities, and higher productivity without chemical fertilizers.

http://sunshineagriculture.vitalbiotech.org

2. Beejamrit

Beejamrit is a natural seed treatment formulation against soil-borne and seed-borne pathogens. It consists of cow dung, urine, lime, and water. On treatment with Beejamrit, the seed develops a microbial coating that protects the seeds from fungal infection, increases vigor in germination, and inculcates strength in the seedling. Application of Beejamrit avoids the use of chemical fungicide, ensuring disease-free conditions at the beginning of a crop's life cycle. This is an important step in the development of strong, resilient plants that have to grow in natural farming conditions and produce high yields.

3. Mulching

Mulching is done by covering the soil surface with organic materials such as crop residues, leaves, straw, or dry grasses. The practice protects the soil from direct sunshine, reduces evaporation, and conserves moisture. Mulching maintains favorable soil temperature, inhibits the growth of weeds, and builds up organic matter in the soil. Decomposing mulch adds nutrients to the soil for a long period, providing a congenial and fertile environment for crop growth. Mulching reduces soil erosion, improves water infiltration into the soil, and increases the habitat of beneficial organisms such as earthworms. All these factors improve the productivity of the soil with minimum water and labor input.

4. Waaphasa

Waaphasa describes the optimum state of aeration within the soil, comprising air and water vapor in soil pores. The Waaphasa principle in ZBNF involves less quantity and frequency of irrigation since the farmer needs to perform light, infrequent irrigation, allowing the retention of suitable moisture within the soil to prevent waterlogging and enable efficient rooting. Proper aeration develops roots deep inside the soil, which are capable of absorbing more nutrients, making plants healthy and resilient. Waaphasa thus leads to a great deal of water saving, and this is the reason why ZBNF is of especially high value in drought-prone and water-scarce areas.

Benefits of Zero-Budget Natural Farming (ZBNF)

1. Low Production Cost

Zero-Budget Natural Farming reduces dependence on expensive external inputs like synthetic fertilizers, chemical pesticides, and purchased nutrients. Farmers are able to produce crops with almost no additional cost by utilizing locally accessible natural resources in the form of cow dung, cow urine, and crop residues. A lesser expense on cultivation automatically reduces the cost of cultivation for the farmer, especially small and marginal farmers, and helps them avoid debt and financial distress.

2. Soil Fertility Enhancement

ZBNF enhances soil fertility through increased microbial activity and heightened natural nutrient cycling in the soil. Application of Jivamrit and other bio-inputs increases the population of beneficial microorganisms, which break down organic matter and release nutrients in plant-available forms. With time, these practices improve soil structure, increase organic carbon content, and strengthen the natural fertility of the soil, ensuring healthier and more productive crops.

3. Climate Resilience

Crops under ZBNF systems show resistance to climate variability such as drought, erratic rainfall, and pest outbreaks. Due to better soil structure and root depth, plants draw water and nutrients during stress conditions. Ecological balance from natural farming practices reduces pest pressure because of the promotion of useful insects and natural predators. Therefore, ZBNF farms tend to withstand extreme weather events more effectively compared to conventionally managed ones.

4. Water Efficiency

The principle of Waaphasa, emphasizing atmospheric moisture and proper aeration of the soil, thus helps the fields in ZBNF to retain more moisture in the soil. Most farmers reportedly reduce their irrigation needs by approximately 30–40 percent. Lower usage of irrigation not only saves water but also assists farmers in the better management of scarce water resources in drought-prone areas.

5. Environmental Sustainability

ZBNF supports environmental sustainability by eliminating the use of synthetic chemicals, which have already threatened ecosystems and degraded the quality of water and soil. Through the use of natural processes and biological inputs, ZBNF encourages biodiversity, improves ecological balance, and supports regenerative agriculture. This sort of practice helps restore soil fertility, reduces greenhouse gas emissions, and thus contributes to long-term ecological conservation.

Case Studies and Field Experiences

The achievement of ZBNF practices can be viewed across various states in India.

The Andhra Pradesh Community-Based Natural Farming (APCNF) program in Andhra Pradesh has been very effective in ensuring a reduction in input costs, improving soil fertility, and stabilization of yields. The thousands of participating farmers have reported increased net incomes and a higher capacity to withstand adverse climate conditions.

In Karnataka, for farmers following ZBNF, there is better crop survival during drought years due to improved soil moisture retention coupled with microbial activity. A reduction in pest attacks has also been reported by many farmers, which resulted in healthy crops and better quality produce.

In Maharashtra, small and marginal farmers practising ZBNF have reported a significant decline in pest incidence and increased soil water retention capacity. These changes have resulted in improved crop performance, especially in drought-prone regions like Vidarbha and Marathwada.

These diverse on-field experiences together demonstrate that ZBNF is not only a cost-effective practice but also a scalable and sustainable model for transforming agricultural livelihoods.

Challenges in ZBNF Implementation

Though ZBNF has many advantages, its widespread adoption has several challenges. It suffers from limited scientific research and validation on the long-term yield stability of ZBNF across various crops and agro-climatic conditions. The majority of the farmers in particular are unwilling to adopt it because of risk factors introduced in yield fluctuations in the initial period of adaptation and the need for preparation of natural inputs at regular intervals. Further, large-scale adoption requires intensive training, awareness programs, and on-field demonstrations to instill confidence among farmers. There is also a need for effective market linkages for naturally grown produce with better prices and regular demand. Research support, government policy, extension services, and community engagement are some of the aspects that need strengthening for successful scaling up of ZBNF.

Future Prospects

Zero-Budget Natural Farming (ZBNF) is rapidly gaining attention as a future-ready farming

system that aligns with India's long-term goals of sustainability, climate resilience, and farmer welfare. The approach is not only economical but also ecologically sound, offering multiple avenues for growth and transformation in the agricultural sector.

1. Alignment with National Priorities

ZBNF supports several national initiatives, including Doubling Farmers' Income, the National Mission on Sustainable Agriculture (NMSA), the Paramparagat Krishi Vikas Yojana (PKVY), and the Pradhan Mantri Krishi Sinchai Yojana (PMKSY). By minimizing external input costs and enhancing soil health, ZBNF complements the government's vision of making agriculture more profitable, inclusive, and sustainable.

2. Expansion Through Policy Support

Multiple states, such as Andhra Pradesh, Karnataka, Himachal Pradesh, and Maharashtra, have already implemented pilot programs and community-level training for ZBNF. A stronger national policy framework, incentives for natural inputs, and farmer-friendly credit schemes can further accelerate its spread across the country.

3. Scope for Scientific Validation and Innovation

Although farmers report positive outcomes, large-scale scientific validation of ZBNF's impact on yield, pest management, and soil microbiology is still needed. Future research can explore:

- ✓ Soil microbial dynamics under natural inputs
- ✓ Long-term carbon sequestration potential
- ✓ Yield stability under climate stress
- ✓ Comparative studies with organic and chemical farming Partnerships between agricultural universities, ICAR institutions, and Krishi Vigyan Kendras (KVKs) can strengthen evidence-based scaling of ZBNF.

4. Market Opportunities and Value Addition

With increasing consumer demand for chemical-free and residue-free produce, ZBNF-based crops have strong potential in domestic and export markets. Establishing branding, certification mechanisms, farmer-producer organizations (FPOs), and farm-to-market linkages can further enhance farmers' profitability.

http://sunshineagriculture.vitalbiotech.org

5. Climate Change Adaptation and Resilience

ZBNF practices such as mulching, mixed cropping, and soil biological activation improve water retention, reduce erosion, and boost carbon levels, making farms more resilient to erratic rainfall, droughts, and heat stress. As climate risks intensify, ZBNF can be a critical climate-smart agriculture strategy.

6. Strengthening Community-Based Extension Systems

Farmer-to-farmer extension, self-help groups (SHGs), natural farming schools, and demonstration plots can play a transformative role in spreading ZBNF knowledge. Digital extension tools—mobile apps, videos, and interactive platforms—can further expand its outreach.

7. **Low-Cost, Inclusive and Scalable Model**Since ZBNF requires minimal external inputs, it is particularly beneficial for small and marginal farmers who often struggle with debt and low profitability. Its inclusive nature makes it suitable for tribal regions, women farmers, and resource-poor farming communities.

CONCLUSION

Zero-Budget Natural Farming represents a paradigm shift in agricultural thinking—it challenges the dependency on chemical inputs and emphasizes a return to ecological harmony. By focusing on soil biology, biodiversity, and natural resource regeneration, ZBNF promotes a more holistic and sustainable form of agriculture.

The system not only reduces the financial burden on farmers by eliminating the cost of synthetic inputs but also enhances soil fertility, crop health, and long-term productivity. Its emphasis on natural processes creates a self-sustaining ecosystem where farm inputs are derived from locally available materials, making the method economically viable and environmentally friendly.

The growing acceptance of ZBNF among farmers, researchers, and policymakers reflects its potential to transform Indian agriculture into a more resilient system capable of withstanding climate change. However, continued research is essential to scientifically validate its impacts and refine its practices. Likewise, supportive government policies, effective extension services, and capacity-building programs are crucial for ensuring large-scale adoption.

In essence, ZBNF is not just a farming technique it is a movement that seeks to restore ecological balance, empower farmers, and promote long-term sustainability. If nurtured with scientific support and institutional backing, ZBNF holds the promise of creating an agricultural landscape that is productive, environmentally healthy, and socially inclusive.

REFERENCES

Kumar, P., Saini, S., Chandel, R. S., Thakur, K. S., Verma, S. C., Chandel, A., ... & Sharma, R. (2023). Natural farming towards crop and economic resilience. *Microbiology* (*Mikrobiologija*), 44, 3-20.

Kumar, S. (2023). Zero Budget Natural Farming: Nurturing Sustainability and Resilience in Agriculture. *Rajat Yadav*, 63, 173.

- Manoharmayum, D. D., Varsha, V. J. H., Gayathri, M., Devi, B. R., & Suresh, G. (2025). Zero Budget Natural Farming in the Era of Climate Crisis: A Multidimensional Framework for Sustainable Agricultural Transformation in India. *Metallurgical and Materials Engineering*, 31(4), 1002-1025.
- Naresh, R. K., Vivek, M. K., Kumar, S., Chowdhary, U., Kumar, Y., Mahajan, N. C., ... & Tomar, S. S. (2018). Zero budget natural farming viable for small farmers to empower food and nutritional security and improve soil health: A review. *Journal of Pharmacognosy and Phytochemistry*, 7(2), 1104-1118.
- Pathak, S., Johar, V., Kaur, A., Elizabath, R., & Muhammad, K. T. (2024). A Comprehensive Review on Harvesting Abundance: Exploring the Tools and Techniques of Zero Budget Natural Farming. *International Journal of Plant & Soil Science*, 36(4), 293-301.