

Role of Soil Microorganisms in Improving Fruit Crop Nutrition

**Rohit Rajendra Todkar¹,
Saurabh Uddhavrao Kaple²,
Sanket Vijayrao Dahake³,
Kartik Rajendra Deshmukh⁴**

¹(M.Sc. Fruit Science), Section of Horticulture, College of Agriculture, Nagpur (PDKV, Akola)

²Ph.D. Scholar, Department of Soil Science, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola

³M.Sc. Fruit Science, College of Agriculture Nagpur, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola

⁴(M.Sc. Agronomy) Department of Agronomy, College of Agriculture, Nagpur (PDKV, Akola).

*Corresponding Author

Rohit Rajendra Todkar*

Available online at
www.sunshineagriculture.vitalbiotech.org

Article History

Received: 26.11.2025

Revised: 1.12.2025

Accepted: 5.12.2025

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Soil microorganisms play an invisible yet powerful role in improving the nutrition, growth and productivity of fruit crops. Although they cannot be seen with the naked eye, microbes such as bacteria, fungi, actinomycetes and algae form the living engine of the soil ecosystem. They decompose organic matter, release essential nutrients and help maintain soil structure, making the soil fertile and biologically active. In fruit orchards, where trees rely heavily on a continuous supply of balanced nutrients over many years, these microorganisms act as natural partners that enhance nutrient availability and support sustainable production.

One of the most important contributions of soil microbes is their ability to convert unavailable nutrients into forms that fruit plants can absorb. Nitrogen-fixing bacteria such as *Azotobacter*, *Azospirillum* and certain cyanobacteria capture atmospheric nitrogen and convert it into ammonium, enriching the soil naturally. Similarly, phosphate-solubilizing bacteria (PSB) and fungi dissolve insoluble phosphorus compounds that would otherwise remain locked in the soil. Potash-solubilizing microbes also break down potassium-bearing minerals, ensuring better root growth, flowering and fruit development. These biological processes reduce the dependence on chemical fertilizers and promote long-term soil fertility.

Mycorrhizal fungi, especially arbuscular mycorrhizae (AM), form another vital group that greatly improves fruit crop nutrition. These fungi colonize plant roots and extend their hyphae deep into the soil, increasing the effective root surface area many times. This results in better uptake of phosphorus, zinc, copper and other immobile nutrients, which are often limiting in orchard soils. Mycorrhizae also help fruit trees tolerate drought, resist soil-borne diseases and improve transplant survival, making them extremely valuable in crops like citrus, mango, banana, grapes and pomegranate.

Microorganisms also enhance soil organic matter decomposition. When organic residues, leaf litter or farmyard manure are added to orchards, microbes break them down into humus, releasing nutrients slowly and steadily. This not only feeds the plants but also improves soil texture, aeration and water-holding capacity. Beneficial microbes such as *Trichoderma* and *Pseudomonas* further protect fruit crops by suppressing harmful pathogens, reducing root rot and improving overall plant health. The balance between decomposers, nutrient cyclers and disease-suppressing microbes creates a healthier soil environment where fruit plants can thrive.

In modern horticulture, the use of bio-fertilizers has gained tremendous importance because they supply beneficial microbes directly to the soil or root zone. In high-density orchards and nutrient-intensive fruit systems, bio-fertilizers ensure efficient nutrient use, reduce input costs and minimize environmental pollution caused by excessive chemical fertilizers. Regular use of compost, mulches and organic amendments also encourages microbial populations and keeps the soil alive.

1. Soil Microorganisms: The Living Engine of Orchard Soil

Soil is not just a mixture of minerals and organic matter—it is a living habitat filled with billions of bacteria, fungi, actinomycetes and algae. These organisms form the biological foundation of healthy orchards. By decomposing organic residues, cycling nutrients and enhancing soil physical properties, microbes act as natural partners of fruit crops. Their activities ensure a continuous supply of essential nutrients throughout the life span of the orchard.

2. Nitrogen-Fixing Microorganisms: Natural Providers of Nitrogen

Nitrogen is a major nutrient required for vegetative growth, leaf development and canopy formation. Certain microbes fix atmospheric nitrogen and make it available to fruit plants.

Major Nitrogen-Fixing Microbes

- ***Azotobacter* and *Azospirillum*** (free-living bacteria)
- **Blue-green algae / Cyanobacteria**
- **Symbiotic bacteria like *Rhizobium*** (in legume intercrops)

These organisms convert atmospheric nitrogen into plant-available ammonium, helping reduce dependence on nitrogen fertilizers. In fruit orchards like citrus, mango, banana and guava,

inoculation with nitrogen fixers improves growth and enhances soil nitrogen levels naturally.

3. Phosphate-Solubilizing Microbes: Unlocking Locked Phosphorus

Phosphorus is often present in soil in insoluble forms, making it nearly unavailable to plants. Phosphate-solubilizing bacteria (PSB) and fungi play a crucial role in dissolving these compounds.

How They Help

- Release organic acids to solubilize mineral-bound phosphorus
- Increase phosphorus uptake by roots
- Improve flowering, root growth and fruit set

PSB is widely used in mango, pomegranate, banana and citrus orchards to improve P-use efficiency.

4. Potash-Solubilizing Microorganisms: Enhancing Fruit Quality

Potassium is essential for fruit size, colour, taste and total soluble solids (TSS). Many microbes, especially potash-solubilizing bacteria (KSB), break down potassium-bearing minerals.

Benefits of K-Solubilizing Microbes

- Enhance K uptake in fruit crops
- Improve stress tolerance
- Increase fruit firmness and storage life

They play an important role in crops like grapes, banana, apple and pomegranate.

5. Mycorrhizal Fungi: Extending the Root Network

Mycorrhizal fungi, particularly arbuscular mycorrhizae (AM), form a symbiotic association with the roots of fruit plants.

Benefits of Mycorrhizae

- Increase nutrient absorption, especially phosphorus and micronutrients
- Improve water uptake
- Enhance disease resistance and root strength
- Support early establishment in young orchards

Fruit crops such as citrus, grapes, banana, mango and papaya respond exceptionally well to mycorrhizal inoculation.

6. Microbial Role in Organic Matter Decomposition

Microorganisms break down plant residues, leaf litter, fruit waste and compost into humus. This process improves the physical and chemical properties of the soil.

Key Contributions

- Release nutrients slowly and steadily
- Improve soil structure and aeration
- Enhance water-holding capacity

- Promote root development

Regular addition of organic materials boosts microbial activity and improves orchard soil health.

7. Beneficial Microbes in Disease Suppression

Some microorganisms act as biological protectors by suppressing harmful pathogens.

Important Beneficial Microbes

- *Trichoderma spp.*: Controls soil-borne diseases
- *Pseudomonas fluorescens*: Induces disease resistance
- *Bacillus subtilis*: Protects roots from fungal attack

By maintaining a healthy microbial balance, fruit orchards become naturally resistant to diseases, reducing the need for chemical pesticides.

8. Bio-Fertilizers: A Sustainable Tool for Fruit Crop Nutrition

Bio-fertilizers are microbial inoculants that improve nutrient availability and soil fertility. Their use in fruit orchards is increasing due to long-term benefits.

Advantages

- Reduce chemical fertilizer requirement
- Increase nutrient-use efficiency
- Improve soil biodiversity
- Enhance plant vigor and yield

Bio-fertilizers like Azotobacter, PSB, KSB, AM fungi and Trichoderma are widely recommended for orchard establishment and maintenance.

9. Practices to Boost Microbial Activity in Orchards

To maintain a rich microbial population, orchard management should focus on soil-friendly practices.

Recommended Practices

- Add organic matter regularly (FYM, compost, mulches)
- Avoid excessive use of chemical fertilizers and pesticides
- Use cover crops or green manures
- Adopt minimal soil disturbance
- Maintain proper moisture through mulching and drip irrigation

These practices create a favorable environment for microbes to thrive.

CONCLUSION

Soil microorganisms play a pivotal role in improving fruit crop nutrition by fixing nitrogen, solubilizing nutrients, enhancing root growth and protecting plants against diseases. They form the foundation of a healthy orchard ecosystem and are essential for sustainable fruit production. By adopting microbe-friendly practices and integrating bio-fertilizers into orchard management, farmers can achieve higher yields, better fruit quality and long-term soil health.