

## Zero Tillage Technology: Increase Wheat Productivity

**Subedar Singh<sup>1\*</sup>,**  
**Ashutosh Kumar<sup>2</sup>,**  
**Manju Kumari<sup>3</sup>,**  
**Anil Kumar<sup>4</sup>**

<sup>1</sup>Assistant Professor, Department of Agriculture, Mandsaur University, Mandsaur, Madhya Pradesh, Pin Code- 458001

<sup>2</sup>SMS, Horticulture Vegetables KVK

Narkatiyaganj, RPCAU, Pusa Bihar

<sup>3</sup>SMS, Department of Horticulture, KVK, Kishanganj, BAU, Pusa Bihar

<sup>4</sup>Assistant Professor, School of Agriculture, Eklavya University, Damoh (M.P.)



\*Corresponding Author

**Subedar Singh\***

**Available online at**  
[www.sunshineagriculture.vitalbiotech.org](http://www.sunshineagriculture.vitalbiotech.org)

### Article History

Received: 5.12.2025

Revised: 10.12.2025

Accepted: 15.12.2025

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

### INTRODUCTION

Wheat occupies a pivotal position in Indian agriculture, particularly in the Indo-Gangetic Plains. However, conventional land preparation involving repeated ploughing is time-consuming, energy-intensive, and often delays wheat sowing after rice harvest. Such delays adversely affect crop growth and yield. Zero tillage (ZT) technology, which involves sowing wheat directly into unploughed fields with crop residues retained on the soil surface, offers an efficient alternative to traditional tillage practices.



### 2. Concept of Zero Tillage Technology

Zero tillage refers to the practice of establishing crops without disturbing the soil through ploughing or other tillage operations. In this system, wheat seeds and fertilizers are placed directly into the soil using specialized zero-till seed-cum-fertilizer drills. Crop residues from the preceding crop, particularly rice straw, are retained on the soil surface as mulch rather than being removed or burned. This surface residue cover protects the soil from erosion, conserves moisture, moderates soil temperature, and improves soil physical and biological properties. Zero tillage thus forms an integral component of conservation agriculture, which emphasizes minimal soil disturbance, residue retention, and crop diversification.

### 3. Role of Zero Tillage in Enhancing Wheat Yield

#### 3.1 Timely Sowing

One of the most significant advantages of zero tillage is the facilitation of timely wheat sowing. Since land preparation is eliminated, wheat can be sown immediately after rice harvest. Timely sowing ensures better seed germination, uniform crop establishment, and a longer growing period. Early-planted wheat escapes terminal heat stress, leading to improved tillering, better grain filling, and higher yield potential.

#### 3.2 Improved Soil Health

Zero tillage contributes substantially to the improvement of soil health. The retention of crop residues increases soil organic carbon content and enhances microbial activity. Improved soil aggregation and structure under zero tillage promote better aeration, water infiltration, and root penetration. Over time, these improvements result in enhanced nutrient availability and sustained soil fertility, which positively influence wheat growth and productivity.

#### 3.3 Efficient Water Use

Water use efficiency is significantly improved under zero tillage systems. Surface residues act as mulch, reducing evaporation losses and conserving soil moisture. Improved soil structure under zero tillage enhances water infiltration and reduces runoff. As a result, irrigation requirements are reduced, making zero tillage particularly beneficial in water-scarce regions and under limited irrigation conditions.

#### 3.4 Enhanced Nutrient Use Efficiency

Zero tillage systems enable precise placement of fertilizers near the seed zone, which improves nutrient availability and uptake by wheat plants. Increased soil biological activity enhances nutrient cycling and mineralization. The combined effect of better root growth and improved nutrient dynamics leads to higher nutrient use efficiency, reduced fertilizer losses, and improved crop yields.

#### 3.5 Weed and Pest Management

Crop residue retention on the soil surface suppresses weed emergence by limiting light penetration and modifying soil temperature and

moisture regimes. Over time, zero tillage alters weed flora and population dynamics, potentially reducing weed pressure. Although weed management may be challenging during the initial years, long-term adoption of zero tillage contributes to more stable and manageable weed populations, indirectly supporting higher wheat productivity.

### 4. Economic and Environmental Benefits

Zero tillage offers substantial economic benefits to farmers by reducing land preparation costs, fuel consumption, and labor requirements. Faster crop turnaround allows timely planting and better resource utilization. Reduced fuel use leads to lower production costs and improved profitability. From an environmental perspective, zero tillage lowers greenhouse gas emissions by minimizing soil disturbance and reducing fossil fuel consumption. Residue retention helps prevent residue burning, thereby improving air quality. Improved soil health and moisture conservation enhance the resilience of wheat production systems to climate variability.

### 5. Constraints in Adoption of Zero Tillage

Despite its proven advantages, the adoption of zero tillage technology faces several constraints. Limited availability and access to zero-till seed drills remain a major challenge for small and marginal farmers. The technology requires initial technical guidance and a learning period for effective implementation. Weed management can be problematic during the early years of adoption, requiring appropriate herbicide strategies. Residue handling, especially in rice-wheat systems with heavy straw loads, poses operational challenges. Additionally, traditional mindsets and reluctance to change established farming practices hinder wider adoption.

### 6. Strategies for Promoting Zero Tillage

Promotion of zero tillage technology requires strengthening extension services and farmer capacity-building programs. Regular training, field demonstrations, and exposure visits can enhance farmers' understanding and confidence. Establishment of custom hiring centers can improve access to zero-till machinery, particularly for smallholders. Policy support and

financial incentives for residue management and conservation agriculture practices can accelerate adoption. Integration of zero tillage with other practices such as crop diversification, balanced fertilization, and precision irrigation will further enhance its benefits. Demonstration trials and farmer field schools play a critical role in showcasing the long-term advantages of zero tillage.

### 7. Future Prospects

Zero tillage technology holds immense potential as a sustainable solution for wheat production, especially under the challenges of climate change, resource scarcity, and rising production costs. Integration of zero tillage with precision nutrient management, improved residue management technologies, and climate-smart agricultural practices can further enhance its effectiveness. Continued research and innovation are needed to refine machinery, develop region-specific management practices, and breed wheat varieties suited to zero tillage systems. Scaling up adoption through policy support and institutional convergence will be key to realizing its full potential.

### CONCLUSION

Zero tillage technology offers a viable and sustainable approach to enhancing wheat productivity while conserving soil, water, and energy resources. By enabling timely sowing, improving soil health, reducing production costs,

and minimizing environmental impacts, zero tillage strengthens the sustainability of wheat-based cropping systems. Wider adoption of this technology will play a crucial role in improving farmer profitability, mitigating climate change impacts, and ensuring long-term food security in wheat-growing regions.

### REFERENCES

El-Shater, T., Mugera, A., & Yigezu, Y. A. (2020). Implications of adoption of zero tillage (ZT) on productive efficiency and production risk of wheat production. *Sustainability*, 12(9), 3640.

Erenstein, O., & Laxmi, V. (2008). Zero tillage impacts in India's rice–wheat systems: a review. *Soil and Tillage Research*, 100(1-2), 1-14.

Iqbal, M., Khan, M. A., Anwar, M. Z., & Mohsin, A. Q. (2002). Zero-tillage Technology and Farm Profits: A Case Study of Wheat Growers in the Rice Zone of Punjab [with Comments]. *The Pakistan Development Review*, 665-682.

Laxmi, V., Erenstein, O., & Gupta, R. K. (2007). Impact of zero tillage in India's rice-wheat systems.

Tahir, M. A., Sardar, M. S., Quddus, M. A., & Ashfaq, M. (2008). Economics of zero tillage technology of wheat in rice-wheat cropping system of Punjab-Pakistan. *J. Anim. Plant Sci*, 18, 42-46.