

Biochar Application for Enhancing Soil Water Holding Capacity

Shafiya Fayaz^{1*},
Parmeet Singh²,
Lal Singh³,
Mir Mehreen Nawaz⁴

¹Ph.D. Research Scholar, Division of Agronomy, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu & Kashmir, Wadura-193201, India.
^{2,3}Professor, Division of Agronomy, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu & Kashmir, Wadura-193201, India.
⁴M.Sc. Student, Division of Agronomy, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu & Kashmir, Wadura-193201, India.

*Corresponding Author
Shafiya Fayaz

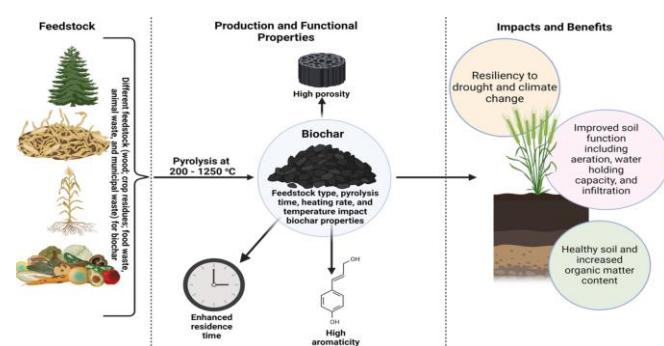
Available online at
www.sunshineagriculture.vitalbiotech.org

Article History

Received: 18.12.2025

Revised: 22.12.2025

Accepted: 27.12.2025


This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Water is one of the most limiting factors in agricultural production worldwide. Efficient utilization and conservation of soil moisture are essential for sustaining crop productivity, particularly in arid, semi-arid, and rainfed regions. In India and many other developing countries, agriculture is largely dependent on monsoon rainfall, which is becoming increasingly unpredictable due to climate change. Declining soil organic matter, soil compaction, and poor soil structure further reduce the soil's ability to retain water.

Traditional soil water conservation practices such as mulching, contour farming, and organic manure application have shown positive results, but their effectiveness is often limited under extreme climatic conditions. In recent years, biochar has gained global attention as a sustainable soil amendment capable of improving soil water retention, nutrient availability, carbon sequestration, and overall soil health.

Biochar's porous structure, high surface area, and stability in soil make it particularly effective in enhancing soil water holding capacity. Its application has shown promising results in sandy, degraded, and low-organic-matter soils. Therefore, biochar represents a climate-smart agricultural input with potential benefits for water conservation and sustainable crop production.

Source: <https://link.springer.com/>

2. Concept and Definition of Biochar

2.1 Definition of Biochar

Biochar is a carbon-rich, porous, and stable solid material produced by the thermal decomposition of organic biomass (such as crop residues, wood chips, animal manure, and agricultural wastes) under limited or no oxygen conditions through a process known as pyrolysis.

Biochar can be defined as a stable form of carbon produced from biomass that is applied to soil to improve soil properties, enhance agricultural productivity, and sequester carbon.

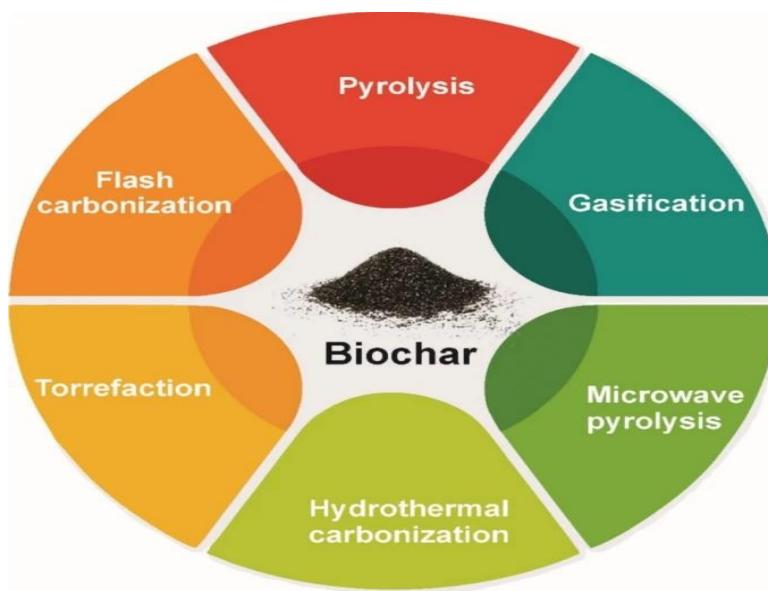
2.2 Feedstocks Used for Biochar Production

Biochar can be produced from a wide range of organic materials, including:

- Crop residues (rice husk, wheat straw, maize cobs)

- Forestry residues and wood chips

- Animal manure and poultry litter


- Sugarcane bagasse

- Coconut shells and other agro-wastes

The type of feedstock significantly influences the physical and chemical properties of biochar, which in turn affects its impact on soil water holding capacity.

2.3 Biochar Production Process

Biochar is produced through **pyrolysis**, which involves heating biomass at temperatures ranging from **300°C to 700°C** in the absence or limited supply of oxygen. Pyrolysis conditions such as temperature, heating rate, and residence time determine biochar's porosity, surface area, and stability.

Source: <https://link.springer.com>

3. Soil Water Holding Capacity: Importance and Challenges

Soil water holding capacity is a fundamental property of soil that directly influences crop growth, productivity, and sustainability of agricultural systems. In the context of climate change and increasing water scarcity, understanding its importance and associated challenges is essential for effective soil and water management.

3.1 Definition of Soil Water Holding Capacity

Soil water holding capacity refers to the ability of soil to retain water against gravitational forces and supply it to plants for their growth and development. It represents the amount of water stored in soil pores after excess water has drained

away. This capacity is mainly governed by soil texture, structure, organic matter content, and pore size distribution. Soils with a balanced proportion of macro- and micropores can retain adequate moisture while ensuring proper aeration for root activity.

3.2 Importance of Soil Water Holding Capacity

Adequate soil water holding capacity ensures a continuous and reliable water supply to crops between irrigation or rainfall events. It enhances nutrient uptake efficiency by facilitating the movement of nutrients in soil solution to plant roots. Improved water retention also increases drought tolerance, enabling crops to withstand short-term moisture stress. Higher soil moisture

availability reduces the frequency and volume of irrigation, conserving water resources and energy. Ultimately, improved water holding capacity leads to greater yield stability and sustainable crop production under variable climatic conditions.

3.3 Challenges Affecting Soil Water Retention

Several factors adversely affect soil water retention. Low soil organic matter reduces aggregation and water storage capacity. Soil compaction and surface crusting restrict infiltration and root penetration. Degraded soil structure further limits moisture retention. Climate-induced rainfall variability, including erratic and intense rainfall events, results in higher runoff and reduced infiltration. Additionally, excessive tillage and removal of crop residues accelerate organic matter loss and soil degradation. These challenges highlight the need for innovative soil amendments such as biochar to improve soil water holding capacity and resilience.

4. Properties of Biochar Relevant to Soil Water Holding Capacity

Biochar possesses several unique physical and chemical properties that make it an effective soil amendment for improving soil water holding capacity. These properties influence how water is stored, retained, and made available to plants within the soil matrix.

4.1 High Porosity

Biochar is characterized by a highly porous structure containing micro-, meso-, and macropores formed during the pyrolysis process. These pores act as reservoirs that can absorb and store water during rainfall or irrigation events and gradually release it to plant roots. The presence of mesopores is particularly important as they hold plant-available water, thereby enhancing moisture availability in the root zone.

4.2 Large Surface Area

The large specific surface area of biochar significantly enhances its ability to adsorb and retain water. This extensive surface provides numerous sites for water adhesion, improving soil moisture retention even under drying conditions. Increased surface area also supports beneficial microbial activity, indirectly contributing to improved soil structure and water retention.

4.3 Hydrophilic Functional Groups

Biochar surfaces contain oxygen-containing functional groups such as hydroxyl, carboxyl, and carbonyl groups. These hydrophilic groups

attract and bind water molecules through hydrogen bonding, increasing the soil's capacity to retain moisture and improving water availability to plants.

4.4 Structural Stability

Biochar is highly resistant to microbial decomposition due to its stable carbon structure. Its persistence in soil ensures long-term improvement of soil physical properties, including water holding capacity, making biochar a sustainable solution for soil moisture management.

5. Mechanisms of Biochar in Enhancing Soil Water Holding Capacity

Biochar enhances soil water holding capacity through several interconnected physical, chemical, and biological mechanisms. These mechanisms collectively improve soil moisture storage and availability to plants, particularly under water-limited conditions.

5.1 Improvement in Soil Structure

Biochar improves soil structure by promoting the formation and stabilization of soil aggregates. Its porous particles act as binding agents between soil particles, resulting in better aggregation and improved pore connectivity. Well-aggregated soils have enhanced water infiltration and storage capacity, reducing runoff and evaporation losses.

5.2 Modification of Soil Pore Size Distribution

Incorporation of biochar alters soil pore size distribution by increasing the proportion of mesopores. Mesopores are crucial for retaining plant-available water, as they hold moisture at tensions accessible to plant roots. This modification ensures a balanced distribution of pores for water retention and aeration.

5.3 Increased Soil Organic Carbon

Biochar contributes stable and recalcitrant carbon to the soil, leading to a long-term increase in soil organic carbon content. Higher organic carbon improves soil structure, enhances aggregation, and increases the soil's capacity to retain water.

5.4 Reduced Bulk Density

Due to its low density, biochar reduces soil bulk density when mixed with soil. Lower bulk density improves soil porosity, aeration, and infiltration, allowing greater water retention while facilitating root penetration.

5.5 Improved Root–Soil Interaction

Enhanced soil moisture availability due to biochar application promotes deeper and more extensive root growth. Improved root–soil contact increases water uptake efficiency, enabling plants to access moisture more

effectively during periods of water stress. Bottom of Form

6. Effect of Biochar on Different Soil Types

The effectiveness of biochar in enhancing soil water holding capacity varies with soil type, as soil texture and structure strongly influence water retention. Biochar application has shown promising results across different soil conditions.

6.1 Sandy Soils

Sandy soils are characterized by large pores, low organic matter content, and poor water retention. Application of biochar significantly improves water holding capacity in sandy soils due to its highly porous structure and large surface area. Biochar fills the large pore spaces, increases the proportion of mesopores, and enhances moisture storage. As a result, water loss through deep percolation is reduced, and plant-available water increases substantially, improving crop performance under drought-prone conditions.

6.2 Clay Soils

Clay soils generally have high water holding capacity but suffer from poor infiltration, compaction, and limited aeration. Biochar improves soil structure by reducing bulk density and promoting aggregation in clay soils. This leads to better pore connectivity, enhanced infiltration, and improved water availability to plant roots. Biochar also helps in reducing surface crusting and waterlogging problems commonly associated with heavy clay soils.

6.3 Degraded and Saline Soils

In degraded and saline soils, biochar improves physical properties by enhancing aggregation and porosity. It reduces salt stress by improving leaching of excess salts and increasing soil moisture retention. Improved soil conditions support better root growth and crop establishment, making biochar a valuable amendment for restoring degraded lands and improving water availability.

7. Methods and Rates of Biochar Application

Proper method and rate of biochar application are crucial for maximizing its effectiveness in enhancing soil water holding capacity and overall soil health. Application practices should be tailored according to soil type, crop requirement, and biochar characteristics.

7.1 Application Methods

Biochar can be applied using several methods depending on cropping system and land preparation practices. Broadcasting followed by incorporation into the soil through ploughing or harrowing is the most common method, ensuring

uniform distribution in the root zone. Band application near the root zone is effective for row crops, as it places biochar where roots can readily access stored moisture. Mixing biochar with compost or farmyard manure (FYM) before application enhances nutrient availability, microbial activity, and reduces the risk of nutrient immobilization. In horticultural and plantation crops, biochar can be applied through raised beds or pits to improve localized soil moisture retention and root development.

7.2 Application Rates

Biochar application rates generally range from 2 to 20 t ha⁻¹, depending on soil texture, crop type, and biochar quality. Sandy and degraded soils often require higher rates, while lower rates are sufficient for fertile soils. Initially, lower application rates are recommended to avoid nutrient imbalance and to assess crop response.

8. Benefits of Biochar Application for Soil Water Management

Biochar application offers multiple benefits for effective soil water management, particularly in water-stressed agricultural systems. One of the major advantages is enhanced soil moisture retention due to biochar's porous structure and high surface area, which allow soils to store more water and release it slowly to plant roots. Improved soil moisture availability leads to higher water use efficiency, enabling crops to produce more biomass per unit of water used. Biochar application also reduces the frequency of irrigation by minimizing water losses through runoff and deep percolation. Increased drought resilience is another important benefit, as crops are better able to withstand moisture stress during dry spells. Moreover, biochar improves crop growth and yield stability by maintaining a favorable soil moisture regime throughout the growing season. Its long-term persistence in soil contributes to sustained improvement in soil health and water holding capacity.

9. Limitations and Constraints

Despite its significant benefits, the adoption of biochar faces several limitations. The high initial cost of biochar production and application can be a major barrier for small and marginal farmers. Biochar quality varies widely depending on feedstock type and pyrolysis conditions, leading to inconsistent results. Limited awareness and technical knowledge among farmers further restrict its adoption. Inadequate availability of biochar at large scale also poses a challenge. Additionally, improper use of biochar may cause

temporary nutrient immobilization, highlighting the need for proper guidelines and integrated application practices.

10. Role of Biochar in Climate-Resilient Agriculture

Biochar plays a vital role in promoting climate-resilient and sustainable agriculture. Its ability to enhance soil water storage helps crops withstand drought and moisture stress, particularly in rainfed and arid regions. Biochar application also contributes to mitigation of climate change by sequestering stable carbon in soils for long periods, reducing atmospheric CO₂ levels. Additionally, it lowers greenhouse gas emissions, such as nitrous oxide and methane, from soils. By improving soil structure, moisture retention, and nutrient availability, biochar strengthens the resilience of cropping systems, ensuring stable productivity under variable and extreme climatic conditions.

11. Future Prospects and Research Needs

Future research on biochar should prioritize the development of low-cost, energy-efficient production technologies suitable for smallholder farmers. Standardization of biochar quality is essential to ensure consistent benefits across soils and crops. Long-term field experiments are needed to assess cumulative effects on soil water holding capacity, crop growth, and carbon sequestration. Crop- and soil-specific application guidelines should be developed to optimize water and nutrient use efficiency. Integrating biochar with other soil and water conservation practices, such as mulching, cover cropping, and organic amendments, can further enhance its effectiveness in sustainable agriculture.

CONCLUSION

Biochar application represents a sustainable and effective strategy for enhancing soil water holding capacity, particularly in water-stressed and degraded agricultural lands. Its unique

physical structure, stability, and ability to improve soil properties make it a valuable amendment for climate-resilient agriculture. When applied judiciously and in combination with appropriate management practices, biochar can significantly improve soil moisture retention, water use efficiency, and crop productivity. Therefore, biochar holds immense potential for sustainable soil and water management and should be promoted as an integral component of modern agricultural systems.

REFERENCES

Atkinson, C. J. (2018). How good is the evidence that soil-applied biochar improves water-holding capacity?. *Soil Use and Management*, 34(2), 177-186.

Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. *Gcb Bioenergy*, 5(2), 132-143.

Mangrich, A. S., Cardoso, E. M. C., Doumer, M. E., Romão, L. P. C., Vidal, M., Rigol, A., & Novotny, E. H. (2015). Improving the water holding capacity of soils of Northeast Brazil by biochar augmentation. In *Water Challenges and Solutions on a Global Scale* (pp. 339-354). American Chemical Society.

Wei, B., Peng, Y., Lin, L., Zhang, D., Ma, L., Jiang, L., ... & Wang, Z. (2023). Drivers of biochar-mediated improvement of soil water retention capacity based on soil texture: A meta-analysis. *Geoderma*, 437, 116591.

Yu, O. Y., Raichle, B., & Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil. *International Journal of Energy and Environmental Engineering*, 4(1), 44.