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INTRODUCTION
Food and nutrition security is one of the most critical

challenges of our time, exacerbated by rapid population
growth, urbanization, and climate-related disasters.
Traditional agriculture is resource intensive, currently
accounting for approximately 70% of global freshwater
withdrawals (World Bank, 2022). To meet the United
Nations Sustainable Development Goal of "Zero Hunger" by
2030 (UN, 2020), we must adopt agricultural practices that
are not only productive but also resilient and
environmentally friendly.

Agquaponics has long been proposed as a solution.
By combining aquaculture (fish farming) with hydroponics
(soil-less plant culture), this symbiotic system recovers
nutrients from fish waste to feed plants. Remarkably,
aquaponics can reduce water usage by up to 90% compared
to conventional agricultural methods (Barbosa et al., 2015;
Pattillo, 2017; Goddek et al., 2019). Despite its potential,
widespread commercial adoption has been slow due to
economic and operational challenges. However, as
highlighted in recent reviews, we are entering a new era of
"Aquaponics 2.0." This phase is defined by "fit-for-purpose"
system designs, a deeper understanding of the microbiome,
and the integration of advanced technologies like Artificial
Intelligence (Al) and Micro-Nanobubbles (MNB).
2. Next-Generation System Designs
While standard media filled and floating-raft systems are
well-established, new configurations are pushing the
boundaries of what aquaponics can achieve.
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2.1. Aeroponics: Maximizing Oxygen
Aeroponics is a soil less method where plant
roots hang suspended in the air and are misted
with nutrient-rich water (Gurley at al., 2020).
This approach solves a major issue in traditional
hydroponics: oxygen availability. By exposing
roots directly to the air, aeroponics accelerates
biomass growth (Kumari, 2019). For instance,
research on decoupled aquaponic systems
showed that basil grown aeroponically achieved
over 40% higher leaf weight and 30% higher root
weight compared to other methods (Pasch et al.,
2021). It allows for higher planting densities and
has been successfully used for crops ranging
from lettuce to medicinal plants and root crops
like potatoes (Ferrini et al., 2021; Caliskan et al.,
2021; Abbasi et al., 2022).

2.2. Maraponics: The Saline Solution

With freshwater becoming a scarce resource,
"Maraponics" (marine aguaponics) offers a
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sustainable alternative by using saltwater. This
system pairs marine fish species like sea bass or
Pacific whiteleg shrimp with salt-tolerant plants,
known as halophytes (Chu et al., 2021; Fronte et
al., 2016). Plants such as samphire (Salicornia
europaea) and red orache act as biological filters,
removing nutrients from the water while
producing a valuable crop. This innovation
allows food production in coastal or arid regions
where freshwater is limited (Thomas et al., 2021;
Brown, 2023).

2.3. Vertical Farming and Living Walls

To address the lack of arable land in urban areas,
aquaponics is going vertical. Vertical farming
systems stack crops in layers, drastically
improving space efficiency. Studies have shown
that vertical setups can increase the yield of
certain leafy greens by up to 200% compared to
soil-based farming, generating significantly
higher profit per square meter.

GROWING SYSTEMS

AEROPONICS

HYDROPONICS

AQUAPONICS

Figure 1: The Evolution of Soil less Farming. A visual comparison of three modern agricultural systems.
Aeroponics suspends plant roots in the air and mists them with a nutrient-rich solution to maximize oxygen
availability. Hydroponics grows plants directly in a continuously circulating water solution. Aquaponics
creates a symbiotic ecosystem by combining hydroponics with aquaculture, utilizing nutrient-rich fish effluent
to organically feed the plants while the roots naturally filter the water for the fish.

3. The Microbiome: The ""Black Box" Opened
For years, aquaponics was managed as a dual
system of fish and plants. We now understand it
is a complex ecosystem driven by invisible
microbial communities.

3.1. Beyond Simple Nitrification

Traditionally, we focused on Nitrosomonas and
Nitrobacter for converting toxic ammonia into
nitrate  (Munguia-Fragozo et al., 2015;
Krastanova et al., 2022). However, modern
genomic tools have revealed a much more
diverse workforce (Munguia-Fragozo et al.,
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2015, Xiong et al., 2021). We have identified
"Comammox" bacteria (Nitrospira spp.) that can
completely oxidize ammonia to nitrate in a single
step, which is highly efficient in low ammonia
environments [Daims et al., 2015; Heise et al.,
2021). Furthermore, plant roots host specific
bacteria like Pseudomonas and Bacillus that not
only aid nutrient uptake but also produce
antibiotics to suppress fungal pathogens
(Schmautz et al.,, 2017; Bartelme; 2018;
Krastanova et al., 2022; Kasozi et al., 2021).
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Figure 2. Role of nitrifying and root-associated bacteria in nitrogen transformation and plant health.

3.2. Microbial Manipulation

With this knowledge, we can now actively
manipulate the system's biology. Operators are
using probiotics (beneficial bacteria) and
prebiotics (nutrients for those bacteria) to
enhance performance (Gao et al., 2022;

Stegelmeier et al., 2022; Wongkiew et al., 2023;
Nadia et al., 2023). Adding Bacillus species, for
example, has been shown to improve water
quality, boost digestive enzymes in fish, and
increase crop Yyields (Kasozi et al., 2023; Kasozi
etal., 2023).
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Figure 3. Microbial manipulation in an integrated aquaponic system for enhanced fish health, water quality, and
crop productivity.

4. Engineering and Technology

The integration of physical technologies is
solving age-old problems regarding oxygenation
and management.

4.1. Micro-Nanobubble (MNB) Technology
Oxygen is the limiting factor in most aquaponic
systems. Standard aeration is often inefficient
because large bubbles rise and burst too quickly.
MNB technology generates bubbles smaller than
1 micrometer that remain suspended in the water
for weeks. This technology has a profound
impact: one study demonstrated that MNB
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aeration increased dissolved oxygen to 10 mg/L
(compared to 6 mg/L with standard aeration),
resulting in a 35% increase in lettuce yield
(Marcelino et al., 2023; Seddon et al., 2012;
Nirmalkar et al., 2018).

4.2. Automation, loT, and Al

The days of manual water testing are numbered.
The Internet of Things (loT) allows for the
deployment of wireless sensors that monitor pH,
dissolved oxygen, and temperature in real-time.
When combined with Artificial Intelligence (Al),
this data becomes predictive. Deep learning
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algorithms can now diagnose  nutrient
concentrations in plants with roughly 96%
accuracy, allowing for precise adjustments
before deficiencies impact the harvest (Banjao et
al., 2020; Defa et al., 2019; Haryanto et al., 2019;
Abbasi et al., 2023; Taha et al., 2022
Karimanzira et al., 2021).

5. Moving Toward Sustainability and
Profitability

5.1. Renewable Biofilter Media

A major environmental concern in aquaponics is
the reliance on plastic biofilter media (like K1
beads), which can release microplastics
(Wongkiew et al., 2018). The industry is shifting
toward renewable alternatives. Materials like
biochar, coconut coir, and wood chips are being
validated as effective substitutes. Biochar is
particularly promising; it supports nitrifying
bacteria, buffers pH levels, and reduces toxic
ammonia concentrations Su et al., 2020; Khiari et
al., 2020).

5.2. Economic Viability

Economic feasibility remains the primary barrier
to widespread adoption (Love et al., 2015;
Greenfeld et al., 2020). High startup costs and
operational complexity often deter investment.
However, pathways to profitability are emerging.
Vegetable sales often account for up to 90% of
profit in these systems, suggesting a business
model focused on high-value crops is essential
(Somerville et al., 2014; Tokunaga et al., 2015).
Additionally, obtaining organic certification
recently made possible for aguaponics by the
USDA (National Organic Standards Board) can
allow farmers to charge premium prices,
sometimes 18% higher than conventional
produce (Quagrainie et al., 2018).

CONCLUSION

Aguaponics is transforming from a niche method
into a sophisticated, data-driven industry. By
combining  "fit-for-purpose”  designs  like
aeroponics and maraponics with cutting-edge
MNB technology and Al, we are overcoming the
limitations of early systems. As we refine these
technologies and gain a better grasp of the
microbial world, aquaponics is positioned to
become a cornerstone of sustainable, climate-
resilient food production.
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